Multigraded combinatorial Hopf algebras and refinements of odd and even subalgebras

نویسندگان

  • Samuel K. Hsiao
  • Gizem Karaali
چکیده

We develop a theory of multigraded (i.e., N-graded) combinatorial Hopf algebras modeled on the theory of graded combinatorial Hopf algebras developed by Aguiar et al. (Compos. Math. 142:1–30, 2006). In particular we introduce the notion of canonical k-odd and k-even subalgebras associated with any multigraded combinatorial Hopf algebra, extending simultaneously the work of Aguiar et al. and Ehrenborg. Among our results are specific categorical results for higher level quasisymmetric functions, several basis change formulas, and a generalization of the descents-to-peaks map.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial Hopf Algebras and Generalized Dehn-sommerville Relations

A combinatorial Hopf algebra is a graded connected Hopf algebra over a field k equipped with a character (multiplicative linear functional) ζ : H → k. We show that the terminal object in the category of combinatorial Hopf algebras is the algebra QSym of quasi-symmetric functions; this explains the ubiquity of quasi-symmetric functions as generating functions in combinatorics. We illustrate this...

متن کامل

The (1 −E)-transform in combinatorial Hopf algebras

We extend to several combinatorial Hopf algebras the endomorphism of symmetric functions sending the first power-sum to zero and leaving the other ones invariant. As a “transformation of alphabets”, this is the (1 − E)-transform, where E is the “exponential alphabet,” whose elementary symmetric functions are en = 1 n! . In the case of noncommutative symmetric functions, we recover Schocker’s id...

متن کامل

Certain subalgebras of Lipschitz algebras of infinitely differentiable functions and their maximal ideal spaces

We study an interesting class of Banach function algebras of innitely dierentiable functions onperfect, compact plane sets. These algebras were introduced by Honary and Mahyar in 1999, calledLipschitz algebras of innitely dierentiable functions and denoted by Lip(X;M; ), where X is aperfect, compact plane set, M = fMng1n=0 is a sequence of positive numbers such that M0 = 1 and(m+n)!Mm+n ( m!Mm)...

متن کامل

Coloured peak algebras and Hopf algebras

For G a finite abelian group, we study the properties of general equivalence relations on Gn = Gn Sn , the wreath product of G with the symmetric group Sn , also known as the G-coloured symmetric group. We show that under certain conditions, some equivalence relations give rise to subalgebras of kGn as well as graded connected Hopf subalgebras of ⊕ n≥o kGn . In particular we construct a G-colou...

متن کامل

Hopf Algebras in Renormalization Theory: Locality and Dyson-schwinger Equations from Hochschild Cohomology

In this review we discuss the relevance of the Hochschild cohomology of renormalization Hopf algebras for local quantum field theories and their equations of motion. CONTENTS Introduction and acknowledgments 1 1. Rooted trees, Feynman graphs, Hochschild cohomology and local counterterms 2 1.1. Motivation 2 1.2. Basic definitions and notation 4 1.3. The Hopf algebra of rooted trees 4 1.4. Tree-l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011